SMLMBoxer

Documentation for SMLMBoxer.

SMLMBoxer.convolveMethod
convolve(imagestack, kernel; use_gpu=false)

Convolve imagestack with given kernel.

Arguments

  • imagestack: Input array of image data
  • kernel: Kernel to convolve with

Keyword Arguments

  • use_gpu: Whether to use GPU

Returns

  • filtered_stack: Convolved image stack
source
SMLMBoxer.dog_filterMethod
dog_filter(imagestack, args)

Apply DoG filter to imagestack based on args.

Arguments

  • imagestack: Input array of image data
  • args: Arguments with sigma values

Returns

  • filtered_stack: Filtered image stack
source
SMLMBoxer.dog_kernelMethod

dog_kernel(s1, s2)

Compute difference of Gaussian kernels.

Arguments

  • sigma_small: Sigma for small Gaussian
  • sigma_large: Sigma for large Gaussian

Returns

  • dog: Difference of Gaussians kernel
source
SMLMBoxer.fillbox!Method

fillbox!(box, imagestack, row, col, im, boxsize)

Fill a box with a crop from the imagestack.

Arguments

  • box: Array to fill with box crop
  • imagestack: Input image stack
  • row, col, im: Coords for crop
  • boxsize: Size of box

Returns

  • boxcoords: Upper Left corners of boxes N x (row, col, im)
source
SMLMBoxer.findlocalmaxMethod

findlocalmax(imagestack, kernelsize; minval=0.0, use_gpu=false)

Find the coordinates of local maxima in an image.

Arguments

  • imagestack: An array of real numbers representing the image data.
  • kernelsize: The size of the kernel used to identify local maxima.

Keyword Arguments

  • minval: The minimum value a local maximum must have to be considered valid (default: 0.0).
  • use_gpu: Whether or not to use GPU acceleration (default: false).

Returns

  • coords: The coordinates of the local maxima in the image.
source
SMLMBoxer.gaussian_2dMethod

gaussian_2d(sigma, ksize)

Create a 2D Gaussian kernel.

Arguments

  • sigma: Standard deviation
  • kernelsize: Kernel size

Returns

  • kernel: Normalized 2D Gaussian kernel
source
SMLMBoxer.genlocalmaximageMethod

genlocalmaximage(imagestack, kernelsize; minval=0.0, use_gpu=false)

Generate an image highlighting the local maxima.

Arguments

  • imagestack: An array of real numbers representing the image data.
  • kernelsize: The size of the kernel used to identify local maxima.

Keyword Arguments

  • minval: The minimum value a local maximum must have to be considered valid (default: 0.0).
  • use_gpu: Whether or not to use GPU acceleration (default: false).

Returns

  • localmaximage: An image with local maxima highlighted.
source
SMLMBoxer.getboxesMethod
getboxes(; kwargs...)

Detect particles/blobs in a multidimensional image stack and return coordinates and boxed regions centered around local maxima.

Arguments

  • imagestack::AbstractArray{<:Real}: The input image stack. Should be 2D or 3D.
  • boxsize::Int: Size of the box to cut out around each local maximum (pixels).
  • overlap::Real: Amount of overap allowed between boxes (pixels).
  • sigma_small::Real: Sigma for small Gaussian blur kernel (pixels).
  • sigma_large::Real: Sigma for large Gaussian blur kernel (pixels).
  • minval::Real: Minimum value to consider as a local maximum.
  • use_gpu::Bool: Perform convolution and local max finding on GPU.

Returns

  • boxstack::AbstractArray{<:Real}: Array with dimensions (boxsize, boxsize, nboxes). Each image in the stack contains a small subregion from imagestack centered around a local maximum
    • boxcoords::Matrix{Float32}: Coordinates of boxes N x (row, col, frame).
    • maxcoords::Matrix{Float32}: Coordinates of boxes N x (row, col, frame).

Details on filtering

The image stack is convolved with a difference of Gaussians (DoG) filter to identify blobs and local maxima. The DoG is computed from two Gaussian kernels with standard deviations sigma_small and sigma_large.

The convolution is performed either on CPU or GPU, depending on use_gpu. After filtering, local maxima above minval are identified. Boxes are cut out around each maximum, excluding overlaps.

Examples

boxes, boxcoords, maxcoords = getboxes(imagestack, boxsize=7, overlap=2.0,  
                         sigma_small=1.0, sigma_large=2.0)
source
SMLMBoxer.getboxstackMethod

getboxstack(imagestack, coords, args::GetBoxesArgs)

Cut out box regions from imagestack centered on coords.

Arguments

  • imagestack: Input image stack
  • coords: Coords of box centers
  • args: Parameters

Returns

  • boxstack: Array with box crops from imagestack
source
SMLMBoxer.maxima2coordsMethod

maxima2coords(imagestack)

Get coordinates of all non-zero pixels in input stack

Arguments

  • imagestack: Input image stack

Returns

  • coords: List of coords for each frame
source
SMLMBoxer.removeoverlapMethod

removeoverlap(coords, args)

Remove overlapping coords based on distance.

Arguments

  • coords: List of coords
  • args: Parameters

Returns

  • coords: Coords with overlaps removed
source
SMLMBoxer.reshape_for_fluxMethod

reshapeforflux(arr::AbstractArray)

Reshape array to have singleton dims for Flux.jl convolution.

Arguments

  • arr: Input array, must be 2D or 3D

Returns

  • Reshaped array with added singleton dimensions
source