SMLMBoxer
Documentation for SMLMBoxer.
SMLMBoxer.convolve
SMLMBoxer.dog_filter
SMLMBoxer.dog_kernel
SMLMBoxer.fillbox!
SMLMBoxer.findlocalmax
SMLMBoxer.gaussian_2d
SMLMBoxer.genlocalmaximage
SMLMBoxer.getboxes
SMLMBoxer.getboxstack
SMLMBoxer.maxima2coords
SMLMBoxer.removeoverlap
SMLMBoxer.reshape_for_flux
SMLMBoxer.convolve
— Methodconvolve(imagestack, kernel; use_gpu=false)
Convolve imagestack with given kernel.
Arguments
imagestack
: Input array of image datakernel
: Kernel to convolve with
Keyword Arguments
use_gpu
: Whether to use GPU
Returns
filtered_stack
: Convolved image stack
SMLMBoxer.dog_filter
— Methoddog_filter(imagestack, args)
Apply DoG filter to imagestack based on args.
Arguments
imagestack
: Input array of image dataargs
: Arguments with sigma values
Returns
filtered_stack
: Filtered image stack
SMLMBoxer.dog_kernel
— Methoddog_kernel(s1, s2)
Compute difference of Gaussian kernels.
Arguments
sigma_small
: Sigma for small Gaussiansigma_large
: Sigma for large Gaussian
Returns
dog
: Difference of Gaussians kernel
SMLMBoxer.fillbox!
— Methodfillbox!(box, imagestack, row, col, im, boxsize)
Fill a box with a crop from the imagestack.
Arguments
box
: Array to fill with box cropimagestack
: Input image stackrow
,col
,im
: Coords for cropboxsize
: Size of box
Returns
boxcoords
: Upper Left corners of boxes N x (row, col, im)
SMLMBoxer.findlocalmax
— Methodfindlocalmax(imagestack, kernelsize; minval=0.0, use_gpu=false)
Find the coordinates of local maxima in an image.
Arguments
imagestack
: An array of real numbers representing the image data.kernelsize
: The size of the kernel used to identify local maxima.
Keyword Arguments
minval
: The minimum value a local maximum must have to be considered valid (default: 0.0).use_gpu
: Whether or not to use GPU acceleration (default: false).
Returns
coords
: The coordinates of the local maxima in the image.
SMLMBoxer.gaussian_2d
— Methodgaussian_2d(sigma, ksize)
Create a 2D Gaussian kernel.
Arguments
sigma
: Standard deviationkernelsize
: Kernel size
Returns
kernel
: Normalized 2D Gaussian kernel
SMLMBoxer.genlocalmaximage
— Methodgenlocalmaximage(imagestack, kernelsize; minval=0.0, use_gpu=false)
Generate an image highlighting the local maxima.
Arguments
imagestack
: An array of real numbers representing the image data.kernelsize
: The size of the kernel used to identify local maxima.
Keyword Arguments
minval
: The minimum value a local maximum must have to be considered valid (default: 0.0).use_gpu
: Whether or not to use GPU acceleration (default: false).
Returns
localmaximage
: An image with local maxima highlighted.
SMLMBoxer.getboxes
— Methodgetboxes(; kwargs...)
Detect particles/blobs in a multidimensional image stack and return coordinates and boxed regions centered around local maxima.
Arguments
imagestack::AbstractArray{<:Real}
: The input image stack. Should be 2D or 3D.boxsize::Int
: Size of the box to cut out around each local maximum (pixels).overlap::Real
: Amount of overap allowed between boxes (pixels).sigma_small::Real
: Sigma for small Gaussian blur kernel (pixels).sigma_large::Real
: Sigma for large Gaussian blur kernel (pixels).minval::Real
: Minimum value to consider as a local maximum.use_gpu::Bool
: Perform convolution and local max finding on GPU.
Returns
boxstack::AbstractArray{<:Real}
: Array with dimensions (boxsize, boxsize, nboxes). Each image in the stack contains a small subregion from imagestack centered around a local maximumboxcoords::Matrix{Float32}
: Coordinates of boxes N x (row, col, frame).maxcoords::Matrix{Float32}
: Coordinates of boxes N x (row, col, frame).
Details on filtering
The image stack is convolved with a difference of Gaussians (DoG) filter to identify blobs and local maxima. The DoG is computed from two Gaussian kernels with standard deviations sigma_small
and sigma_large
.
The convolution is performed either on CPU or GPU, depending on use_gpu
. After filtering, local maxima above minval
are identified. Boxes are cut out around each maximum, excluding overlaps.
Examples
boxes, boxcoords, maxcoords = getboxes(imagestack, boxsize=7, overlap=2.0,
sigma_small=1.0, sigma_large=2.0)
SMLMBoxer.getboxstack
— Methodgetboxstack(imagestack, coords, args::GetBoxesArgs)
Cut out box regions from imagestack centered on coords.
Arguments
imagestack
: Input image stackcoords
: Coords of box centersargs
: Parameters
Returns
boxstack
: Array with box crops from imagestack
SMLMBoxer.maxima2coords
— Methodmaxima2coords(imagestack)
Get coordinates of all non-zero pixels in input stack
Arguments
imagestack
: Input image stack
Returns
coords
: List of coords for each frame
SMLMBoxer.removeoverlap
— Methodremoveoverlap(coords, args)
Remove overlapping coords based on distance.
Arguments
coords
: List of coordsargs
: Parameters
Returns
coords
: Coords with overlaps removed
SMLMBoxer.reshape_for_flux
— Methodreshapeforflux(arr::AbstractArray)
Reshape array to have singleton dims for Flux.jl convolution.
Arguments
arr
: Input array, must be 2D or 3D
Returns
- Reshaped array with added singleton dimensions